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Abstract. A variety of applications on the problem of short-text mes-
sages require text normalization process that transforms ill-formed words
into standard ones. Recently, many successful approaches have been ap-
plied to text normalization especially for social media text. Since each
natural language has its own difficulties and barriers, we need to design
an architecture to normalize short text messages in Turkish language
which has an morphologically rich agglutinative structure. The model
proceeds from simple solutions towards more complicated and sophisti-
cated ones to reduce time complexity. A variety of techniques from lexical
similarity to n-gram language modeling have been evaluated by exploit-
ing several resources such as high quality corpus, morphological parser
and dictionaries. We demonstrate that unsupervised text normalization
architecture adapting both lexical and semantic similarity for Turkish
domain has shown efficient results that might contribute to other stud-
ies.

Key words: lexical normalization, short text message, microblog, text
preprocessing

1 Introduction

Micro-blogging social environment provides large volume of data on which many
applications with regard to natural language processing (NLP) can easily be
applied. According to reliable resources 1, %75 percent of Internet users are also
active social media users. Facebook has over 1 billion users, Twitter has about
500 million ones. Moreover this trends are dramatically increasing over time. It
is claimed that 30 billion devices will connect to Internet in the next decade.
That creates an huge amount of social data, namely big data, and gives both
challenge and possibility to the scientist and experts in all fields.

Usage of Internet eventually shapes the communication style and more im-
portantly use of language. Texting Language is a new phenomenon for the field
of NLP. Significantly, new generation starts to build their own language codes,

1 http://www.techradar.com/news
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as in Internet slang. Recently many NLP studies have been on Micro-blogging
social media and texting language. Disaster detection, sentiment analysis, event
discovery are among the most popular studies. In texting language, the quality
of the language can vary from slang language to high-quality text. Therefore
text processing tool requires a reliable normalization phase to understand the
meaning of the messages. Short-text messages highly include typos, abbrevi-
ation, acronym, phonetic substitution, number substitution, use of interjection
etc. All these raise an important barrier to be solved. Text normalization process
is, thus, more important step in the preprocessing phase of the many studies.

There are a variety of studies regarding normalization especially in the most-
studied languages such as English, German, and Spanish. Our primary motiva-
tion is to apply text normalization approach to a morphologically rich language,
Turkish. Although it is one of the less-studied languages and its language re-
sources are quite limited, Internet usage in Turkey is significantly higher than
expected, which necessitates such preprocessing tools then. Each language has
its own challenges due to grammar, lexicon, culture, and also political environ-
ment. For instance, some phonetic substitution such as number substitution as
one of the best phenomenon in English, is not widely used in Turkish language.
Having a rich morphological structure of a language turns out the problem a bit
harder for our case.

With various experiments, we observed the structure of Texting Language
in Turkish and we figured out many phenomena. Our normalization phases are
based on those findings. Sufficient volume of both Twitter data and newswire
corpus are mined to extract the rules, to conduct the experiment and to test.
After morphological analysis of a given tweet, the system works on ill-formed
tokens. A corpus and a pre-defined dictionary are exploited to build a look-up
dictionary, namely IV, since that using a simple traditional dictionary cannot
match many cases especially for agglutinative languages and special domains.
The frequent terms occurring in the corpus are added to the IV list. A variety
of assumptions are experimentally compiled and applied. Furthermore lexical
similarity functions are used to correctly normalize the ill-formed tokens. Some
cases such as missing a letter, using ASCII counterpart of a letter are easily
recovered. Finally, an n-gram language model utilizing corpus evidence are ap-
plied to improve system performance. The architecture is designed in a manner
of increasing degree of time complexity

2 Related Works

A variety of sources such as tweets, SMS messages, blogs, etc. have been used for
normalization with different approaches; machine translation models, dictionary-
based approach, language models, finite state transducers, and cascaded meth-
ods. One of the important attempts [1] proposes syntactic normalization with
combining two steps; they first process the tweets to remove noise and feed them
with statistical machine translation (SMT). Other studies have also used MT
models for normalization [2–4].
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Another approach which is an unsupervised model, with using noisy channel
model, is presented by [5, 6] for normalization. The study [7] designs a normal-
ization system that integrates enhanced letter transformation, visual priming,
and string/phonetic similarity for SMS and Twitter data sets.

The study [8] proposed rule-based approach for normalization task. In [9],
parser-centric view of normalization is presented. In study [10], a classifier is
proposed to detect ill-formed words and produce their canonical lexical forms in
standard English based on morphophonemic similarity. Word similarity and con-
text are used to select the correct candidate. In [11], they present that dictionary-
based approach outperforms state-of-the-art performance. The extension of these
studies is proposed with significantly expanded experimentation in [12]

Although Tweet normalization have been widely and generally applied for
English, other languages such as German, Spanish, Malay, French etc. have been
also supported [13–18]. In Turkish, a cascaded approach has been applied to
short text messages [19]. They propose the model by categorizing the problem
into seven steps: letter case transformation, replacement rules & lexicon lookup,
proper noun detection, deasciification, vowel restoration, accent normalization
and spelling correction.

3 Methodology and Experimental Setup

3.1 Social Media Language

As social media continues to ruin the language, the normalization task is getting
challenging. It might share the same problems with spell checking but they differ
in that lexical variants in short text messages are often intentionally generated
due to the need to save characters, for social identity, or due to the some conven-
tion. To normalize an ill-formed word, first we build an in-vocabulary (IV) list.
If a word is both not a member of IV and not parsed by a parser, it is considered
as ill-formed words.

For building a look-up IV, we exploit some resources; a morphological ana-
lyzer, a dictionary and a big reliable corpus. Under some circumference, morpho-
logical analyzer cannot distinguish correct words from ill-formed words. Some
proper nouns cannot be handled by the parser then. Some trendy places, orga-
nizations, actors cannot be either detected by morphological parsed or found in
standard dictionary. To build a broader dictionary, we exploit a reliable corpus
that are mostly compiled from news texts that have been supervised or edited by
experts. It consists of acceptable level of formal language. Most frequent terms
or correctly parsed terms in it are retrieved and considered a reliable IV terms.
Therefore almost all surface forms of a word can be represented by IV. A high
coverage of IV might reduce the OOV rate as in all other morphologically rich
language such as Fin, Turkish.

In study [20], they discuss the need for vocabulary size. For a comparison,
they checked a English corpus consists of texts from the New York Times mag-
azine. Whereas there are fewer than 200.000 different word forms in the 40
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Fig. 1. Architecture of Normalization system
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million word English corpus, the corresponding values for Finnish, Estonian,
Turkish corpora of the same size exceed 1.8 million, 1.5 million and 1 million
words, respectively. When we build a broader vocabulary, we reach the 2.4 M
unique tokens out of 500 million token sized corpus from which all surface forms
of the words are taken.

If a given token is not in IV and cannot parsed by parser, many steps are
evaluated to detect the problems and to find a solution. However, we left some
particular word untouched as listed below.

– By a slang dictionary with the size of ∼200, all slang words are left as-is.
– 1 or 2 sized words are also left.
– a word mixed with numbers such as tr12 are left.
– all hash-tags
– all e-mails, all numbers, digits are detected and left
– tokens containing some non-latin5 characters
– all emoticons are left as-is

All remaining words are passed to the next phases of system. According to
unidentified words, we figured out some phenomena in Turkish Texting Lan-
guage. This depicts how social media users use their language to communicate.
The facts are as follows:

– Number substitution such as 2nite/(tonight) as in English is not a case for
Turkish Texting Language. Just few cases can be observed for the phonetic
substitution.

– Intentionally using ASCII character set is widely spread due to save time
and the reason preventing the message uncorrupted in other system that
does not support latin-5 character set. Turkish has own accented character
set (çöşüığ). In the mobile phones, to type s instead of ş is more easier.
ASCII character set is widely used than Turkish accents. Replacing ASCII
characters by their Turkish counterpart are called deasciifying.

– Clipping or shortening the messages to save time. (Geliyorum− >geliyom,
gelyom : koşacağım− > koşcam, koşcm)

– The Turkish language encompasses a diverse range of accents and dialects
as in other languages. This provides a wide range of pronunciation. Those
pronunciations and dialects can reshape short text messages and their style.
Writing in short text is akin to spoken language. People want to text as if
they talk.

– Interjection are frequently used as in many languages. The words are length-
ened by repeating the letters. When some syllabus is needed to stress, the
repetition is used then.

– The suffix (-da) has two kind of usage in the grammar. First is to code
locative case. Second meaning is “also”: “Ben de istiyorum” (I also want to).
In the latter case, a space must intervened between the word and the da/de
suffix as in the example. Same holds true for the suffix ki (the meaning is
“that is”). In both cases, users can miss or do not care putting space between
words. Therefore the word is left in the unidentified status and cannot be
captured by the both morphology analyzer and the vocabulary.
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3.2 Normalization Process

We develop different solutions for some of the problems listed above. The Figure
1 depicts high-level architecture of the system. In the left-as-is process, some
tokens are left as it is written and tagged by the system. Slang terms, numbers,
emails and other type of tokens are simply detected. Remaining ill-formed tokens
are passed the next process. The further treatment processes are letter repeti-
tion, asciification, lexical similarity and n-gram modeling. After each treatment,
token is checked against the IV. All the phases are ordered by their degree of
complexity.

3.3 Letter repetition treatment

We generate a set of variants by varying the repetitive letters for a given token.
For instance, for a token “gitttikkkkk” (we have gone), after reducing the
repetition number of a repetitive letter two as in (gittikk), we produce all variants
as in the list (gittik, gitikk, gittik, gitik). 2n variants are produced for a given
token that includes n different repetitive letters. In this case the term “gittik”
is found in IV and accepted. If more than one candidates captured in variant
list, decision is made by checking term frequency. This solution is applied in each
phase. If none of them is not in IV, we apply lexical similarity to find the closest
IV word to any of those variant list.

3.4 Turkish Accents vs. ASCII counterpart

Most short messages have this phenomena since that it is more easy to type
ASCII counterpart of the Turkish accents. Some studies called that phenomenon
as asciification. So the solution is called deasciification. The studies immediately
apply this approach for any given potential token. However, before applying this
process, we need to detect a tweet has this kind of asciification sympthom or
not. Instead of working on individual words, we would look entire tweet instead.
Our assumption is that if a user types only ASCII letters, s/he does not use
any Turkish accents in any position, then deasciification process is needed and
applied. Likewise users who types Turkish accent tends not to asciify at all. If
a token does not contain any Turkish accent and potential ASCII counterpart
of Turkish accents, it is considered suspicious tweet in terms of asciification.
This approach dramatically reduces program complexity and prevent applying
unnecessary operations and wasting time. The computed probability of that a
proper tweet contains any Turkish accent is 92%, where a proper tweet refers to
contains at least n tokens, where n is 4. It is, then, said a Tweet (n>=4) is in
Turkish language, it most likely contains Turkish accents.

Turkish characters and their ASCII counterparts are “ğüşıöç” and “gusioc”.
All variants are produced for a given word. The ill-formed token “cocuk” (kid)
contains four potential ASCII character set (c,o,c,u) that are intentionally re-
placed for Turkish accents. And variants of the words are [’cocuk’, ’cocük’,
’coçuk’, ’coçük’, ’cöcuk’, ’cöcük’, ’cöçuk’, ’cöçük’, ’çocuk’, ’çocük’, ’çoçuk’, ’çoçük’,
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’çöcuk’, ’çöcük’, ’çöçuk’, ’çöçük’]. It has four suspicious ASCII characters and,
24, 16 variants are produced. In this list only the term “çocuk“ is in IV. If
more candidates are in the list, we select them according to their term frequency
scores. If any IV word is found, lexical similarity is used between each variant
and IV list.

Another crucial problem is that tweets have both asciificaiton and letter
repetition problem together. Problems are cascaded and multiplied then. We
apply nested procedure to reach normalized form. Again, remaining phases are
the similar to previous one.

3.5 Lexical Similarity

There are many well-known orthographic metrics: edit distance, longest com-
mon subsequence ratio and rank distance. In this study we used longest com-
mon subsequence metric as implemented in python library. If a token cannot be
normalized in all the steps above, the system takes the best matches from the
vocabulary. If the similarity score is lower than a specific threshold k, 0.6 (empir-
ically selected), candidate is rejected. If more than one close matches share the
same score, the most frequent one is proposed as in the entire phases. If there is
no any candidate, it proceeds the next phase. Those tokens that have not been
handled by the system so far are passed to next n-gram language model where
semantic similarity measurements are used for selection as defined in the next
section.

3.6 Simplified N-gram Language Model

N-grams language model is considered still the state-of-the-art language model
to measure semantic similarity. The language model is using only the prior prob-
ability of the word sequence. To extract contextually similar (OOV, IV) pairs
from a large collection of micro-blog site, tokens are represented in context word
vector. The cosine similarity is widely used to compare two context vectors. For a
given ill-formed word, the context words are indexed with their positions within
a context window size. Standard way of construction of contextual similarity is
visiting each occurrence of ill-formed words to produce a vector within a win-
dow size. The candidate whose vector is the closest to that of ill-formed token
is selected. The weak point of this approach is that producing context vector
needs some re-occurrence of ill-formed word. Ill-formed words are more likely to
be unique or low frequent.

Moreover, we simplify the approach to reduce the complexity, when consid-
ering the huge size of corpus and text messages. Thus, simply taking neighbors
of ill-formed words and looking their context vectors could be easier and less
complex. Even a given ill-formed word is unique, the system exploits only those
nearby words. For instance, for a given case (left, ill-token, right), we build a
vector of words that occur with the pattern (left, *, right) as in the formula if
and only if either left or right must be IV word.

arg maxc LexicalSim(c, token), c ∈ matchPattern(left, ∗, right) (1)
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The words captured by the pattern are counted and sorted by their pattern
frequencies and lexical similarities. The main defect of the solution is that both
nearby words are ill-formed.

4 Results and Evaluation

4.1 Evaluation

In this experiment, we build a broader IV list by exploiting dictionary2 and a
reliable corpus. This is more than a standard dictionary in that we need to keep
all formation of the words in order to reduce the time complexity of parsing
a word.The number of unique tokens in Turkish language is very high when
compared to English and some other languages.The size is about ∼ 2.2 million.
For a given token, each step produces normalization candidates that are checked
against that IV and if a match is found, the process is terminated.

Language usage in social media might vary due to culture, society, age, gen-
der etc. When manually checking the system performance on Twitter data in
Turkish Language with size of 1000 entries, we listed several problems and their
distributions as shown in Table 1. In this table, two columns represents model
and model+n-gram, where former refers to all steps until lexical similarity, latter
is entire system including n-gram language model. The main problem originates
from typing ASCII character instead of Turkish accents, with the ratio of 41%.
Second problem is accent usage with the ratio of 16.4% due to socio-cultural,
new generation etc. as discussed in previous sections. Third one is some typos
such as dropping vowels, incorrectly typing some letters etc. Some suffixes -da
-de must be separately added with a space. However, they are mostly typed
adjacent so that the parser and the IV list cannot specify the word. Those are
needed to be specified and solved before.

The system performance is listed in Table 1 for each subproblem where the
baseline algorithm is simply choosing the lexically closest candidate from IV
list. The table suggests that the model successfully solve asciification problem.
Second, accent usage and repetition are also easily captured. While baseline
function gets 40% precision, the proposed model gets about 77% precision and
the n-gram supported model with gets 80%. Even though individual performance
of n-gram language model is acceptable level, it improves system performance
by only 3% increase due to that our initial model can capture many problems
and remaining parts are limited and hard to be solved such that some unsolved
cases could not be normalized by even human annotator.

Beside its contribution to system performance, it is worth testing how much
n-gram model individually performs. We tested n-gram model against both the
real twitter data set and artificially created data set. Success rate on real twitter
set is 53 %. Artificial ill-formed words are automatically malformed by shifting,
repeating, shuffling, deleting of original IV words in tweet data. Thus, we can
measure the system performance against even huge amount of twitter data set,

2 code.google.com/p/zemberek/
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Table 1. Success rate of Models

% Baseline% Model% Model+N-gram%

Accent 16.43 38.04 75.00 75.00
ASCII 41.25 37.66 93.94 94.81
Slang 1.43 12.50 50.00 50.00
Proper 7.68 67.44 76.74 76.74
Vocatives 4.64 30.77 50.00 61.54
Type 9.29 51.92 61.54 67.31
Repetition 3.39 42.11 68.42 68.42
Unknown 6.07 0.00 0.00 0.00
No prob 3.75 28.57 52.38 66.67
Other 0.89 0.00 80.00 80.00
DeASCII 5.18 31.03 41.38 48.28

Average 0.40 0.77 0.80

as huge as possible. For artificially created over 16K ill-formed words, n-gram
model showed a performance of 47% precision.

Artificial word formation is considered risky in other approaches, especially
based on purely lexical based methods. Computer randomization might have
some hidden rules even if randomization process is carefully and well prepared
and that makes the model success invalid. Therefore our purely lexical-based
models are checked against not the artificial data but the real data with real
human mistakes. This is why we used two kinds of test set with different size.
Therefore the size of real data set is less than that of artificial one. Running
only n-gram model on artificial dataset does not have invalidity problem since
that the model check neighbors that are not artificial and appears in real tweets.
Only the target words are malformed. To clarify the situation, the average lexical
similarity between artificially malformed words and their original ones is nearly
70% which is the similar average score in real data set. For example, the similarity
between ”tmrrww“ and ”tomorrow“ is 71%, then it is acceptable level of artificial
malformation whereas n-gram model applies lexical similarity only for sorting
the candidates captured by distributional word space model.

The proposed model performs acceptable level of precision when compared
to other studies. The results in [10] shows that 93% accuracy for English Tweets.
Another proposed approach uses Random Walks on a contextual similarity graph
[6] has 92.43% precision. The study [1] proposed a system that uses SMT with
79% accuracy. In Turkish [19], the proposed model with a 86% accuracy of ill
formed word detection and 71% accuracy for candidate word generation.

In this paper, we propose an architecture of unsupervised text normaliza-
tion Turkish language. The architecture orders the submodules by their degree
of complexity. The important contribution is considered that lexical similarity
functions, building a corpus-based IV dictionary and n-gram language modeling
are integrated within an architecture for Turkish domain. For a better compar-
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ison with other languages, all the experiments and results need to be checked
with same input data and the comparison criteria must be well-designed in term
of time complexity, data characteristics, circumferences and other factors. That
would be in our future plan. Other future work is to create a more reliable
look-up dictionary because automatically augmented dictionaries can contains
some level of incorrect entries. Reducing the those errors improves the system
performance both in accuracy and complexity. Comparing the model with other
studies and using BLEU system as baseline will be in our other future tasks as
well.

5 Conclusion

In this paper, we propose an architecture for Turkish text normalisation. Even
though Turkish is one of the less-studied language, Internet usage of native
Turkish speakers is more than expected. Therefore the studies on social media
texting language are getting important. They necessitates some preprocessing
phases such as text normalization, tokenization, boundry identification etc.

We exploit many resources to normalize a given ill-formed token; tweet data,
a huge corpus and a reliable dictionary. In order to design an architecture, first
we figured out texting language phenomena in social media short text. The
problems can vary; letter repetition, missing vowels, asciification and others.
The submodules are sorted in accordance with their time complexity. We utilized
lexical similarity to compare the candidates and IV words to make a decision.
The last phase of the model is semantic model that includes n-gram language
modeling. We simplified n-gram language model to reduce time complexity. This
module uses word space model to normalize an ill-formed token by looking at
their neighbors. Neighbors are used as semantic space that is very similary to
lexico-syntactic patterns. The candidates that are captured from this phase are
again evaluated in terms of their lexical similarity. So this step actually employs
both semantic and lexical similarity.

We divide our architecture into two models; model and model+n-gram. The
first model is based on only lexical similarity, which refers to all phases except
n-gram. Second is using both lexical and semantic similarity, entire architecture
including n-gram model. First model achieves 77 % precision, second model gets
80 % precision. Both highly outperform baseline function that simply takes the
lexically closest term in IV to ill-formed token and its success rate is about 40 %.
We also evaluated n-gram model separately to check its success. When we run
n-gram semantic model as a separate unit on the data, we get 53% precision.
When running on an artificially created big data, we get about 47%. This shows
us designed n-gram language model can have a sufficient capacity even though
its contribution to entire architecture is limited.

This study might be considered first study that applies both lexical similarity
and semantic similarity together to Turkish text normalization. When compar-
ing the similar studies, the proposed architecture gets sufficient and promising
results. For a better comparison with those studies, all the experiments might
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be tested with same data and conditions. That would be in our future plan.
Another future work is to extend look-up dictionary to reduce level of incorrect
entries, which might improves the system performance. Using BLEU system for
a better comparison will be in our other future tasks as well.

Acknowledgments
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